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a b s t r a c t

Mixed hydrofluoric and nitric acids are widely used as a good etchant for the pickling process of stainless
steels. The cost reduction and the procedure optimization in the manufacturing process can be facilitated
by optically detecting the concentration of the mixed acids. In this work, we developed a novel method
which allows us to obtain the concentrations of hydrofluoric acid (HF) and nitric acid (HNO3) mixture
samples with high accuracy. The experiments were carried out for the mixed acids which consist of the
eywords:
aman spectroscopy
ydrofluoric acid (HF)
itric acid (HNO3)
artial least squares regression (PLSR)

HF (0.5–3 wt%) and the HNO3 (2–12 wt%) at room temperature. Fourier Transform Raman spectroscopy
has been utilized to measure the concentration of the mixed acids HF and HNO3, because the mixture
sample has several strong Raman bands caused by the vibrational mode of each acid in this spectrum.
The calibration of spectral data has been performed using the partial least squares regression method
which is ideal for local range data treatment. Several figures of merit (FOM) were calculated using the

nal (N
et analyte signal (NAS)
igures of merit (FOM)

concept of net analyte sig

. Introduction

In the manufacturing process of stainless steel, oxide layer
hich is caused by heat treatment or welding shows inferior pro-

ective properties. The oxide layer is the source of the low corrosion
esistance and surface quality. Thus, pickling process which is
emoval process based on chemical procedure is required. In gen-
ral, mixed acid which is comprised of hydrofluoric acid (HF) and
itric acid (HNO3) is widely used to pickle both iron contamination
nd high temperature oxide scales on the surface of the worked
teel [1]. In order to reduce cost of the process and decrease the
eneration of corrosive waste acid, recycling or recovering pro-
ess of pickling liquor is widely used. In the waste acid recycling
ystem, acid supplementation process is crucial to maintain effi-
ient pickling performance. Thus, fresh acids should be added to
ake up for HF and HNO3 which were consumed during pickling

rocess. For above reason, it is important to frequently measure
nd preserve the optimized individual acidic concentrations of the

ickling liquid. In order to analyze the HF and HNO3 concentra-
ions quantitatively in the pickling liquid, Galvez et al. suggested a
cheme involving several steps of titration [2]. Lindroos also pro-
osed a method which combines direct potentiometry with an
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AS) to evaluate performance of our methodology.
© 2010 Elsevier B.V. All rights reserved.

alkalimetric titration and a fluoride-selective electrode [3]. How-
ever, these methods present several disadvantages to be overcome:
time-consuming sample preparation for the titration procedure,
complicated measurement processes, and the problem of possible
exposure to the toxic acid. On the other hand, great advantages can
be gained from the development of an optical measurement system
of each component in mixed acid in a non-invasive manner with
high accuracy.

This optical measurement system can be realized by Raman
spectroscopy [4] and near-infrared (NIR) spectroscopy [5]. Because
water shows weak Raman scattering, it does not interfere with
Raman signal in contrary to the IR absorption signal. Thus, Raman
spectroscopy is a predominant technique for analysis of individual
components in a aqueous solutions with minimum sample prepa-
ration. Furthermore, it is more powerful than NIR spectroscopy
owing to the sensitivity of solvent bands to the presence of solute.
However, as yet, no information exists on Raman spectroscopy
for the detection of each component in mixed acids containing
HF and HNO3. Thus, we developed a novel method to obtain the
concentrations of the HF and HNO3 mixture samples with high
degree of accuracy by using Raman spectroscopy. Because, above

technique generates multivariate response for each analyzed sam-
ple, univariate calibration was not sufficient to extract chemical
information from spectral data. Therefore, we coupled FT-Raman
spectroscopy with the multivariate calibration techniques and
partial least squares regression (PLSR) [6,7] to analyze the con-
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entration of each component in mixed acids. Net analyte signal
oncept was applied to our calibration model for estimation of fig-
res of merit such as sensitivity, selectivity, signal to noise ratio,

imit of detection and limit of quantification [8–10]. Repeatability
s calculated for evaluation of precision of proposed method [11].

. Experiments

.1. Pickling solution

The experimental samples of Raman spectroscopy were
esigned by a dilution series of standard solutions. In this work,
6 samples were prepared by mixing appropriate amounts of HF,
NO3 and H2O. Pickling solution normally involves 12 wt% HNO3
nd 3 wt% HF mixtures which were optimized concentrations for
ickling process. Employment of orthogonal design is crucial to
inimize the degree of relationship between any concentrations of

he mixtures and make exact calibration model. We employ l-level
ractional factorial design to make mutually orthogonal design. The
rthogonal design requires minimum l2 experiments (36 experi-
ents) for 6 concentration levels (l = 6) [12]. Concentration ranges

f mixtures for HF and HNO3 were 0.5–3 wt% and 2–12 wt%, respec-
ively. Deionized (DI) water was used in this experiment to remove
ther ions (impurities) in H2O because these impurities could affect
he Raman spectra as noise signals.

.2. Instrumentation

Raman spectra were obtained by a FT-Raman spectrome-
er (Bruker optics Inc., FRA106/s) using a Nd:YAG laser source
1064 nm) with 500 mW power. The spectrometer is equipped with

liquid nitrogen (N2) cooled germanium (Ge) diode detector to
btain high sensitivity. A CaF2 beam splitter is employed as an
nterferometer. During the experiments, the spectra were recorded
ver 100 scans in the 100–4500 cm−1 range and the spectral res-
lution was 4 cm−1. Approximately 3 min was spent on obtaining
ach spectrum.

.3. Data processing

For instrument control and data acquisition, the OPUS software
Bruker optics Inc.) was employed. Data treatment was performed
sing MATLAB 7.4.0 (The Mathworks, Inc.) with the PLS toolbox
.2.1 (Eigenvector Research, Inc.). Several multivariate analysis
ethods such as PCA and PLSR algorithm were utilized to build
calibration model of the collection of Raman spectra.

.4. Data analysis and interpretation

A chemometrics techniques such as the PCA and PLSR were
mployed to analyze the 36 spectra data through calibration mod-
ling. We detect and remove the outlier using the Q-residual,
everage, Y Studentized residual values. After excluding 4 outliers,
ll 32 samples were split into two subsets—a calibration set and a
rediction set (generally with a ratio of 2:1). Thus, 22 samples are in
group as a calibration set, which will be used to build a calibration
odel and the remaining 10 samples are grouped as a prediction

et, which is used to evaluate the prediction performance of each
odel. In the calibration process, it is important to optimize the

umber of PLS factors. While the characteristics of the spectrum

ould not be accurately represented by too small a number of PLS
actors, too large a number of PLS factors could draw measurement
oises from the data into the calibration model. Because the num-
er of measurements which consists of the data set were not big
nough to group into a training and test set, a leave-one-out cross-
 (2010) 1413–1417

validation (LOOCV) method was applied. This method is an itera-
tive method in which each sample is used once for prediction and
removed from the model formulation. The method can eliminate
the dominant effect of a single outlier, perturb the data set and
maintain statistical robustness.

In order to estimate performance of the calibration model, we
employed the root mean squared error (RMSE) for the calibration
(RMSEC) and for the cross-validation (RMSECV). To validate the pre-
diction performance of the calibration model, we employed the root
mean square error of prediction (RMSEP) for the prediction set.

2.5. Figures of merit (FOM)

Lorber defined net analyte signal (NAS) to be the part of a
measured signal which is orthogonal to the interferents [8]. NAS
calculation is a useful method for the evaluation of figures of merit
(FOM). FOM in multivariate calibration represents the quality of a
given analytical method. In this study, we calculated several FOM
such as sensitivity (SEN), analytical sensitivity (�), effective res-
olution (�−1), selectivity (SEL), signal to noise ratio (SNR), limit
of detection (LOD) and limit of quantification (LOQ). Throughout
this work, vectors and matrix are denoted by boldface letters.
For our purpose, it suffices to regard all vectors as living in the
three-dimensional Euclidean space R3. The notation ‖u‖ stands for
(u · u)1/2, the (Euclidean) length of u where summation convention
applies to repeated indices.

NAS vector can be calculated as:

NASi = (xib)(bT b)
−1

bT

where xi is the row spectrum vector of the i th sample and b is the
regression column vector from the calibration model [9,10].

Sensitivity (SEN) is defined to be:

SENi = NASi

yi
, SENi = ‖SENi‖

where yi is the measured concentration for the i th sample. Sensi-
tivity for specific components is the mean value of the univariate
sensitivity values for all calibration samples [13]. However, it is
impossible to compare sensitivities of multiple analytical method
due to each sensitivity of its instrumental intensity. Calculation of
analytical sensitivity (�) and the inverse of its value (�−1) can be
used to normalize sensitivities for comparison of analytical meth-
ods by estimating a minimum concentration difference regardless
of the specific technique. The normalization is performed by the
following equation:

� = SENi

ır

where ır is the measure of instrumental noise which is the standard
deviation in the predicted concentration for blank samples [10].

Selectivity is defined in order to inform how unique the spec-
trum of analyte is, compared with the other components. Thus, it
represents the quantity of the signal which is not lost due to spectral
overlap and is defined as:

SELi = ‖NASi‖
‖xi‖

.

Finally, we calculated signal to noise ratio, limit of detection and
limit of quantification which are defined as [13]:

NAS 3ır

SNRi = i

ır
, LOD =

SEN
, LOQ = 3.3LOD

where LOD is the minimum detectable concentration of analyte in
the sample which can be distinguished from noise level. LOQ is the
limit from which a reliable quantification is possible and is defined
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ig. 1. FT-Raman spectra of DI water and mixed acids which have different mixture
b) 1200–3600 cm−1.

o be the minimum level as 3.3 times the LOD, or 10 times the
tandard deviation which is used to calculate LOD [14,15].

. Results and discussion

.1. FT-Raman spectra

Fig. 1 shows the FT-Raman spectra of 32 different acids which
ontain HF (between 0.5 wt% and 3 wt%) and HNO3 (between 2 wt%
nd 12 wt%) compared with the spectrum of DI water in the range
f 100–4500 cm−1. Fig. 2 represents the Raman spectra of DI water
H2O), 3 wt% HF and 3 wt% HNO3. As shown in Fig. 2, H2O has the
aman bands around 3215 cm−1 and 1651 cm−1. These bands are
elated to the OH stretching mode and bending mode, respectively
16]. Raman spectra of 3 wt% HNO3 show a distinctive spectral fea-
ure at 1048 cm−1 which corresponds to the symmetric stretch
and of nitrate ion (NO3

−). The Raman bands at 1413 cm−1 and
16 cm−1 correspond to the asymmetric stretch mode and the
–N–O bending mode of the nitrate ion, respectively [17].

Christy et al. measured the Raman spectra of solid phase
aHF2[18]. As the pressure increases, the Raman peak position
f the hydrogen bifluoride ion (FHF−) shifts from 633 cm−1 to
58 cm−1. Thus, the Raman band of liquid phase HF at 655 cm−1 is
ssociated with the symmetric stretch mode of hydrogen bifluoride

on. Because HNO3 has several Raman active modes which do not
verlap with the characteristic modes of HF, we can distinguish and
nalyze each component. The most intense and non-overlapping
ands, 655 cm−1 for HF and 1048 cm−1 for HNO3 are utilized for
uantitative analysis. Fig. 3(a) represents the Raman spectra of the

ig. 2. FT-Raman spectra of DI water (H2O), 3 wt% HF and 3 wt% HNO3. The spectra
ave been offset on the Y-axis for clarity.
inations of HF and HNO3 in the following spectral regions: (a) 550–1200 cm−1 and

mixed acids where HF concentration varies from 0.5 wt% to 3.0 wt%
with the fixed HNO3 concentration. As the content of HF increases,
the relative intensity of the symmetric stretch band corresponding
to the hydrogen bifluoride ion (FHF−) increases. Fig. 3(b) shows the
Raman spectra of mixed acids where HNO3 concentration varies
from 2 wt% to 12 wt% while the HF concentration is fixed. As shown
in Fig. 3(b), the increase in relative Raman intensity of the sym-
metric stretch band corresponding to the nitrate ion is observed
with the increase of nitric acid. It is experimentally observed that
the intensity of Raman spectra is linearly proportional to the con-
centrations of each component. This relation will be demonstrated
through regression analysis in Section 3.2.

3.2. Analysis of results via PLS calibration model

Each acid of mixture samples shows comparatively distinctive
spectral features as shown in Fig 2. Therefore, we can obtain quite
robust calibration results with the use of univariate analysis. How-
ever, in case of HF, there exists some overlapping Raman bands
caused by the O-N–O bending mode of the nitrate ion (716 cm−1).
Furthermore, when we need to monitor mixture samples with
high concentration, the range of spectral overlap will broaden.
Besides, there exists some impurities in the waste acid and they
produce more interfering signals. Then, the univariate calibration
is not sufficient to extract quantitative information from spectral
data caused by interferences. Therefore, we performed multivariate
analysis to build a less sensitive calibration model to the external
variables and to apply this model into actual pickling process in the
steel manufacturing line [19].

Prior to building a calibration model, we employed several
preprocessing methods such as mean center, derivative and
smoothing. The mean center method is used to remove constant
background contributions, which are considered of little interest
for data variance interpretation [20]. Hence, the data were prepro-
cessed with the 15 point Savitzky–Golay smoothing filter to reduce
the spectral noise [21] and the first derivative method was used to
remove the effect of baseline fluctuation.

To evaluate the prediction performance of the calibration
model, the root mean squares regression error of cross-validation
(RMSECV) has been calculated for each acid. As the number of PLS
factors increases, RMSEC always decreases, while RMSECV does not
decrease in some cases. As a rule, the optimal number of PLS fac-
tors is determined by the first minimum value of RMSECV. If the

increase of PLS factors does not reduce the RMSECV significantly,
the former PLS factor is selected as the optimal calibration model.
The optimal number of factors and the corresponding RMSE are
summarized in Table 1. We obtained the RMSEP values of 0.22 wt%
for HF and 0.29 wt% for HNO3 and the correlation coefficients of
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Fig. 3. FT-Raman spectra for (a) mixed acids of four different HF contents (0.5–3.0 wt%) with a fixed HNO3 concentration (12 wt%) and (b) mixed acids of six different HNO3

contents (2.0–12.0 wt%) with a fixed HF concentration (0.5 wt%).

Table 1
PLS calibration results and figures of merit (FOM) for HF and HNO3 with Raman spectra.

Calibration method PLS
Preprocessing method Mean center, first derivative smoothing

(Savitzky–Golay)
Cross-validation (CV) Leave-one-out CV (LOOCV)
Spectral region (cm−1) 4500–100
Components HF HNO3

# of PLS factors 3 3
Accuracy RMSEC wt% 0.15 0.41

RMSECV wt% 0.37 0.51
RMSEP wt% 0.22 0.29
R2 (calibration) Unitless 0.97 0.98
R2(CV) Unitless 0.89 0.97
R2 (prediction) Unitless 0.96 0.99

FOM Sensitivity (SEN) Intensity/wt% 0.0002 0.0039
Analytical sensitivity (�) 1/wt% 18.79 387.09
Effective resolution (�−1) wt% 0.053 0.003
Selectivity (SEL) Unitless 0.032 0.393
Signal to noise ratio (SNR) Unitless 17.87 314.98
Limit of detection (LOD) wt% 0.15 0.01

wt%

coeffic

0
v
o
c
t
a

Limit of quantification (LOQ)

Repeatability HF 1.5 wt% HNO3 6 wt%
HF 2.5 wt% HNO3 10 wt%

.96 for HF and 0.99 for HNO3. Fig. 4 represents the predicted

ersus actual concentration plots in the optimized spectral range
btained by PLSR. The open and filled circles represent the set of
alibration and prediction data, respectively. The predicted concen-
rations are in excellent agreement with actual concentrations. We
lso analyze three real samples which are used in pickling process

Fig. 4. Predicted versus true concentrations of (a) HF and (b) HNO3. The open an
0.49 0.03

ient of variation (% CV) 1.6 0.2
1.2 0.4

by using Raman spectroscopy. And in order to validate our method,

we employ the reference method by using the potentiometry with
an alkalimetric titration and fluoride ion selective electrode. Fig. 5
shows the Raman spectra of real samples and Table 2 presents the
results for three real samples analyzed by Raman spectroscopy and
reference methods. As shown in Table 2, predicted results for real

d filled circles represent the calibration and prediction data, respectively.
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Fig. 5. FT-Raman spectra of three real samples. The spectra have been offset on the
Y-axis for clarity.

Table 2
Results for three real samples analyzed by Raman spectroscopy and reference
methods.

HF HNO3

Raman a Reference a Raman a Reference a

s
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n
t
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t
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[

[
[
[
[

[

[
[
[

Real sample 1 0.53 0.45 7.08 6.90
Real sample 2 0.50 0.36 7.07 7.10
Real sample 3 1.01 1.02 7.44 7.70

a Results in weight percent (wt%).

amples are quite accurate. Therefore, these results confirm that
he proposed method enables us to make a quantitative analysis of
ndividual components in a mixture sample with high robustness
y optical measurements.

.3. Figures of merit (FOM)

We calculated several FOM such as sensitivity (SEN), analytical
ensitivity (�), effective resolution (�−1), selectivity (SEL), signal to
oise ratio (SNR), limit of detection (LOD) and limit of quantifica-
ion (LOQ) as described in Section 2.5. Results for figures of merit
ased on optimal PLS factors are shown in Table 1. Sensitivity for HF

s much smaller compared to those of HNO3. By calculating analyt-
cal sensitivity and effective resolution values, we can compare the
ensitivity of our method with different analytical method. Selec-
ivity value is a measure of quantity which is not overlapped with
ther interferences and the value varies between 0 and 1. As shown
n Table 1, HNO3 shows superior selectivity over HF. This means
hat the Raman signal of HNO3 shows more distinctive spectral
eatures compared to HF as mentioned in Section 3.2. The repeata-
ility was evaluated by using the coefficient of variation (CV%),

hrough the measurement of 6 replicates of the same sample [11].

e also calculated signal to noise ratio, limit of detection and limit
f quantification. These repeatability and FOM results support that
he calibration quality of the present work is sufficient to analyze
ickling liquid.

[

[

[
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4. Conclusion

This research has shown that FT-Raman spectroscopy can be
applied to measure the concentrations of mixed acids consist-
ing of HF and HNO3. In contrast to chemical analysis methods
such as titration or the ion selective electrode scheme, the cur-
rent study shows the potential for predicting concentrations of
mixed acid in a non-contact and non-destructive manner. There-
fore, the method can be used to control and optimize the pickling
process for obtaining high surface quality and superior corrosion
resistance. PLSR was employed to design a calibration model for
the determination of each acid concentrations in pickling liquid.
Through employing the PLSR model with mean center, first deriva-
tive and smoothing, we obtained the good prediction results. We
demonstrated that FT-Raman spectroscopy coupled with the PLSR
algorithm can be used to analyze concentrations of pickling liq-
uid in an on-line manner. Finally, we calculated several FOM to
diagnose the limits of our method and those results showed the
present method has sufficient performance in analyzing pickling
liquid.
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